DOI 10.1515/tmj-2017-0042

Certain classes of bi-univalent functions with bounded boundary variation

H. Orhan ${ }^{1}$, N. Magesh ${ }^{2}$ and V. K. Balaji ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
${ }^{2}$ Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India
${ }^{3}$ Department of Mathematics, L.N. Govt College, Ponneri, Chennai, Tamilnadu, India
E-mail: orhanhalit607@gmail.com ${ }^{1}$, nmagi_2000@yahoo.co.in ${ }^{2}$, balajilsp@yahoo.co.in ${ }^{3}$

Dedicated to Prof. Dr. Muhammet Kamali on the occasion of his fifty sixth anniversary.

Abstract

In their pioneering work dated 2010 on the subject of bi-univalent functions, Srivastava et al. actually revived the study of the coefficient problems involving bi-univalent functions in recent years. Inspired by the pioneering work of Srivastava et al., there has been triggering interest to study the coefficient problems for many different subclasses of bi-univalent functions. Motivated largely by a number of sequels to the investigation by Srivastava et al., in this paper, we consider certain classes of bi-univalent functions to obtain the estimates of their second and third Taylor-Maclaurin coefficients. Further, certain special cases are also indicated. Some interesting remarks about the results presented here are also discussed.

2010 Mathematics Subject Classification. 30C45. 30C50
Keywords. Univalent functions, bi-univalent functions, bi-starlike function, bi-convex function, functions with bounded boundary rotation, coefficient estimates, convolution (Hadamard) product.

1 Introduction and definitions

Let \mathcal{A} be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. The Koebe one-quarter theorem [9] ensures that the image of \mathbb{D} under every univalent function $f \in \mathcal{A}$ contains the disc with the center in the origin and the radius $1 / 4$. Thus, every univalent function $f \in \mathcal{A}$ has an inverse $f^{-1}: f(\mathbb{D}) \rightarrow \mathbb{D}$, satisfying $f^{-1}(f(z))=z$, $z \in \mathbb{D}$ and

$$
f\left(f^{-1}(w)\right)=w,|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}
$$

Moreover, it is easy to see that the inverse function has the series expansion of the form

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots, w \in f(\mathbb{D}) \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent, if both f and f^{-1} are univalent in \mathbb{D}, in the sense that f^{-1} has a univalent analytic continuation to \mathbb{D}, and we denote by Σ this class of bi-univalent functions.

Recently, in their pioneering work on the subject of bi-univalent functions, Srivastava et al. [28] actually revived the study of the coefficient problems involving bi-univalent functions. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series expansion (1.1) were found in several recent investigations (see, for example, $[1,2,4,5,6,7,8,10,11,12,13,14,15,16,17,19,21,22$, $23,24,25,26,27,29,30,31,32,33,34,35]$ and references therein). The aforecited all these papers on the subject were actually motivated by the pioneering work of Srivastava et al. [28]. However, the problem to find the coefficient bounds on $\left|a_{n}\right|(n=3,4, \ldots)$ for functions $f \in \Sigma$ is still an open problem.

Definition 1.1. [18] Let $\mathcal{P}_{m}(\beta)$, with $m \geq 2$ and $0 \leq \beta<1$, denote the class of univalent analytic functions P, normalized with $P(0)=1$, and satisfying

$$
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} P(z)-\beta}{1-\beta}\right| \mathrm{d} \theta \leq m \pi
$$

where $z=r e^{i \theta} \in \mathbb{D}$.
For $\beta=0$, we denote $\mathcal{P}_{m}:=\mathcal{P}_{m}(0)$, hence the class \mathcal{P}_{m} represents the class of functions p analytic in \mathbb{D}, normalized with $p(0)=1$, and having the representation

$$
\begin{equation*}
p(z)=\int_{0}^{2 \pi} \frac{1-z e^{i t}}{1+z e^{i t}} \mathrm{~d} \mu(t) \tag{1.3}
\end{equation*}
$$

where μ is a real-valued function with bounded variation, which satisfies

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=2 \pi \quad \text { and } \quad \int_{0}^{2 \pi}|d \mu(t)| \leq m, m \geq 2 \tag{1.4}
\end{equation*}
$$

Clearly, $\mathcal{P}:=\mathcal{P}_{2}$ is the well-known class of Carathéodory functions. That is, the normalized functions with positive real part in the open unit disc \mathbb{D}.

Definition 1.2. A function $f \in \Sigma$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

belongs to the class $\mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m ; \beta), \gamma \in \mathbb{C} \backslash\{0\}, \alpha \geq 0, \lambda \geq 0, m \geq 2$ and $0 \leq \beta<1$, if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left((1-\alpha+2 \lambda) \frac{f(z)}{z}+(\alpha-2 \lambda) f^{\prime}(z)+\lambda z f^{\prime \prime}(z)-1\right) \in \mathcal{P}_{m}(\beta), z \in \mathbb{D} \tag{1.5}
\end{equation*}
$$

and for $g(w)=f^{-1}(w)$

$$
\begin{equation*}
1+\frac{1}{\gamma}\left((1-\alpha+2 \lambda) \frac{g(w)}{w}+(\alpha-2 \lambda) g^{\prime}(w)+\lambda w g^{\prime \prime}(w)-1\right) \in \mathcal{P}_{m}(\beta), w \in \mathbb{D} \tag{1.6}
\end{equation*}
$$

It is interesting to note that the special values of $\alpha, \gamma, \lambda, \beta$ and m lead the class $\mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m ; \beta)$ to various subclasses, we illustrate the following subclasses:

1. For $\alpha=1+2 \lambda$, we get the class $\mathcal{W}_{\Sigma}(\gamma, \lambda, 1+2 \lambda, m ; \beta) \equiv \mathcal{F}_{\Sigma}(\gamma, \lambda, m ; \beta)$. A function $f \in \Sigma$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

is said to be in $\mathcal{F}_{\Sigma}(\gamma, \lambda, m ; \beta)$, if the following conditions

$$
1+\frac{1}{\gamma}\left(f^{\prime}(z)+\lambda z f^{\prime \prime}(z)-1\right) \in \mathcal{P}_{m}(\beta), z \in \mathbb{D}
$$

and for $g(w)=f^{-1}(w)$

$$
1+\frac{1}{\gamma}\left(g^{\prime}(w)+\lambda w g^{\prime \prime}(w)-1\right) \in \mathcal{P}_{m}(\beta), w \in \mathbb{D}
$$

hold.
2. For $\lambda=0$, we obtain the class $\mathcal{W}_{\Sigma}(\gamma, 0, \alpha, m ; \beta) \equiv \mathcal{B}_{\Sigma}(\gamma, \alpha, m ; \beta)$. A function $f \in \Sigma$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

is said to be in $\mathcal{B}_{\Sigma}(\gamma, \alpha, m ; \beta)$, if the following conditions

$$
1+\frac{1}{\gamma}\left((1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)-1\right) \in \mathcal{P}_{m}(\beta), z \in \mathbb{D}
$$

and for $g(w)=f^{-1}(w)$

$$
1+\frac{1}{\gamma}\left((1-\alpha) \frac{g(w)}{w}+\alpha g^{\prime}(w)-1\right) \in \mathcal{P}_{m}(\beta), w \in \mathbb{D}
$$

hold.
Remark 1.3. For $\gamma=1$ and $m=2$ the class $\mathcal{B}_{\Sigma}(1, \alpha, 2 ; \beta) \equiv \mathcal{B}_{\Sigma}(\alpha ; \beta)$ was introduced and studied by Frasin and Aouf [10].
3. For $\lambda=0$ and $\alpha=1$, we have the class $\mathcal{W}_{\Sigma}(\gamma, 0,1, m ; \beta) \equiv \mathcal{P}_{\Sigma}(\gamma, m ; \beta)$. A function $f \in \Sigma$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

is said to be in $\mathcal{P}_{\Sigma}(\gamma, m ; \beta)$, if the following conditions

$$
1+\frac{1}{\gamma}\left(f^{\prime}(z)-1\right) \in \mathcal{P}_{m}(\beta), z \in \mathbb{D}
$$

and for $g(w)=f^{-1}(w)$

$$
1+\frac{1}{\gamma}\left(g^{\prime}(w)-1\right) \in \mathcal{P}_{m}(\beta), w \in \mathbb{D}
$$

hold.
Remark 1.4. For $\gamma=1$ and $m=2$, the class $\mathcal{P}_{\Sigma}(1,2 ; \beta) \equiv \mathcal{P}_{\Sigma}(\beta)$ was introduced and studied by Srivastava et al. [28] (see [12]).

Definition 1.5. A function $f \in \Sigma$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

belongs to the class $\mathcal{R}_{\Sigma}(\gamma, \lambda, m ; \beta), \gamma \in \mathbb{C} \backslash\{0\}, \lambda \geq 0, m \geq 2$ and $0 \leq \beta<1$, if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z^{1-\lambda} f^{\prime}(z)}{(f(z))^{1-\lambda}}-1\right) \in \mathcal{P}_{m}(\beta), z \in \mathbb{D} \tag{1.7}
\end{equation*}
$$

and for $g(w)=f^{-1}(w)$

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w^{1-\lambda} g^{\prime}(w)}{(g(w))^{1-\lambda}}-1\right) \in \mathcal{P}_{m}(\beta), w \in \mathbb{D} \tag{1.8}
\end{equation*}
$$

Remark 1.6. For $\gamma=1$ and $m=2$, the class $\mathcal{R}_{\Sigma}(1, \lambda, 2 ; \beta) \equiv \mathcal{R}_{\Sigma}(\lambda, \beta)$ was introduced and studied by Prema and Keerthi [19].

1. For $\lambda=0$, we have the class $\mathcal{R}_{\Sigma}(\gamma, 0, m ; \beta) \equiv \mathcal{S}_{\Sigma}(\gamma, m ; \beta)$. A function $f \in \Sigma$ of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

is said to be in $\mathcal{S}_{\Sigma}(\gamma, m ; \beta)$, if the following conditions

$$
1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \in \mathcal{P}_{m}(\beta), z \in \mathbb{D}
$$

and for $g(w)=f^{-1}(w)$

$$
1+\frac{1}{\gamma}\left(\frac{w g^{\prime}(w)}{g(w)}-1\right) \in \mathcal{P}_{m}(\beta), w \in \mathbb{D}
$$

hold.
In order to prove our results for the function in the classes $\mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m ; \beta)$ and $\mathcal{R}_{\Sigma}(\gamma, \lambda, m ; \beta)$, we need the following lemma due to Goswami et al. [11]:
Lemma 1.7. Let the function $\Phi(z)=1+\sum_{n=1}^{\infty} h_{n} z^{n}, z \in \mathbb{D}$, such that $\Phi \in \mathcal{P}_{m}(\beta)$. Then,

$$
\left|h_{n}\right| \leq m(1-\beta), n \geq 1
$$

In this investigation, we find the estimates for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the subclass $\mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m ; \beta)$ and $\mathcal{R}_{\Sigma}(\gamma, \lambda, m ; \beta)$. Also, we obtain the upper bounds using the results of $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

2 Main results

In the following theorem, we obtain coefficient estimates for functions in the class $f \in \mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m ; \beta)$.
Theorem 2.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m ; \beta)$. Then

$$
\begin{align*}
\left|a_{2}\right| & \leq \min \left\{\sqrt{\frac{|\gamma| m(1-\beta)}{1+2 \alpha+2 \lambda}} ; \frac{|\gamma| m(1-\beta)}{1+\alpha}\right\}, \tag{2.1}\\
\left|a_{3}\right| & \leq \frac{|\gamma| m(1-\beta)}{1+2 \alpha+2 \lambda} \tag{2.2}\\
\left|2 a_{2}^{2}-a_{3}\right| & \leq \frac{|\gamma| m(1-\beta)}{1+2 \alpha+2 \lambda} . \tag{2.3}
\end{align*}
$$

Proof. Since $f \in \mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m ; \beta)$, from the Definition 1.2 we have

$$
\begin{equation*}
1+\frac{1}{\gamma}\left((1-\alpha+2 \lambda) \frac{f(z)}{z}+(\alpha-2 \lambda) f^{\prime}(z)+\lambda z f^{\prime \prime}(z)-1\right)=p(z) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left((1-\alpha+2 \lambda) \frac{g(w)}{w}+(\alpha-2 \lambda) g^{\prime}(w)+\lambda w g^{\prime \prime}(w)-1\right)=q(w) \tag{2.5}
\end{equation*}
$$

where $p, q \in \mathcal{P}_{m}(\beta)$ and $g=f^{-1}$. Using the fact that the functions p and q have the following Taylor expansions

$$
\begin{align*}
& p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots, z \in \mathbb{D} \tag{2.6}\\
& q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots, w \in \mathbb{D} \tag{2.7}
\end{align*}
$$

and equating the coefficients in (2.4) and (2.5), from (1.2) we get

$$
\begin{gather*}
\frac{1}{\gamma}(1+\alpha) a_{2}=p_{1}, \tag{2.8}\\
\frac{a_{3}}{\gamma}(1+2 \alpha+2 \lambda)=p_{2}, \tag{2.9}\\
-\frac{1}{\gamma}(1+\alpha) a_{2}=q_{1}, \tag{2.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{(1+2 \alpha+2 \lambda)}{\gamma}\left(2 a_{2}^{2}-a_{3}\right)=q_{2} . \tag{2.11}
\end{equation*}
$$

Since $p, q \in \mathcal{P}_{m}(\beta)$, according to Lemma 1.7, the next inequalities hold:

$$
\begin{align*}
& \left|p_{k}\right| \leq m(1-\beta), k \geq 1, \tag{2.12}\\
& \left|q_{k}\right| \leq m(1-\beta), k \geq 1, \tag{2.13}
\end{align*}
$$

and thus, from (2.9) and (2.11), by using the inequalities (2.12) and (2.13), we obtain

$$
\left|a_{2}\right|^{2} \leq|\gamma| \frac{\left|q_{2}\right|+\left|p_{2}\right|}{2[1+2 \alpha+2 \lambda]} \leq \frac{|\gamma| m(1-\beta)}{1+2 \alpha+2 \lambda}
$$

which gives

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{|\gamma| m(1-\beta)}{1+2 \alpha+2 \lambda}} \tag{2.14}
\end{equation*}
$$

From (2.8), by using (2.12) we obtain immediately that

$$
\left|a_{2}\right|=\left|\frac{\gamma p_{1}}{1+\alpha}\right| \leq \frac{|\gamma| m(1-\beta)}{1+\alpha}
$$

and combining this with the inequality (2.14), the first inequality of the conclusion is proved.
According to (2.9), from (2.12) we easily obtain

$$
\left|a_{3}\right|=\left|\frac{\gamma p_{2}}{1+2 \alpha+2 \lambda}\right| \leq \frac{|\gamma| m(1-\beta)}{1+2 \alpha+2 \lambda},
$$

and from (2.11), by using (2.13) we finally deduce

$$
\left|2 a_{2}^{2}-a_{3}\right|=\left|\frac{\gamma q_{2}}{1+2 \alpha+2 \lambda}\right| \leq \frac{|\gamma| m(1-\beta)}{1+2 \alpha+2 \lambda},
$$

which completes our proof.
Corollary 2.2. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{F}_{\Sigma}(\gamma, \lambda, m ; \beta)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma| m(1-\beta)}{3+6 \lambda}} ; \frac{|\gamma| m(1-\beta)}{2+2 \lambda}\right\} \\
& \left|a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{3+6 \lambda}, \quad\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{3+6 \lambda}
\end{aligned}
$$

Corollary 2.3. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{B}_{\Sigma}(\gamma, \alpha, m ; \beta)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma| m(1-\beta)}{1+2 \alpha}} ; \frac{|\gamma| m(1-\beta)}{1+\alpha}\right\}, \\
& \left|a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{1+2 \alpha}, \quad\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{1+2 \alpha} .
\end{aligned}
$$

Corollary 2.4. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{P}_{\Sigma}(\gamma, m ; \beta)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma| m(1-\beta)}{3}} ; \frac{|\gamma| m(1-\beta)}{3}\right\} \\
& \left|a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{3},\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{3}
\end{aligned}
$$

Setting $\beta=0$ in Theorem 2.1 we get the following special case:
Corollary 2.5. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{W}_{\Sigma}(\gamma, \lambda, \alpha, m)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma| m}{1+2 \alpha+2 \lambda}} ; \frac{|\gamma| m}{1+\alpha}\right\},\left|a_{3}\right| \leq \frac{|\gamma| m}{1+2 \alpha+2 \lambda},\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{|\gamma| m}{1+2 \alpha+2 \lambda}
$$

For $\beta=0$ the Corollary 2.2 reduces to the next result:
Example 2.6. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is in the class $\mathcal{F}_{\Sigma}(\gamma, \lambda, m ; 0)$ then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma| m}{3+6 \lambda}} ; \frac{|\gamma| m}{2+2 \lambda}\right\},\left|a_{3}\right| \leq \frac{|\gamma| m}{3+6 \lambda},\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{|\gamma| m}{3+6 \lambda}
$$

For $\beta=0$ the Corollary 2.3 reduces to the next result:
Example 2.7. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is in the class $\mathcal{B}_{\Sigma}(\gamma, \alpha, m ; 0)$ then

$$
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma| m}{1+2 \alpha}} ; \frac{|\gamma| m}{1+\alpha}\right\},\left|a_{3}\right| \leq \frac{|\gamma| m}{1+2 \alpha},\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{|\gamma| m}{1+2 \alpha}
$$

For $\beta=0$ the Corollary 2.4 reduces to the next result:
Example 2.8. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is in the class $\mathcal{P}_{\Sigma}(\gamma, m ; 0)$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{m}{3}}, \quad\left|a_{3}\right| \leq \frac{m}{3}, \quad \text { and } \quad\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{m}{3}
$$

If we put $\gamma=1$ and $m=2$ in Corollary 2.4, we have the following corollary:
Corollary 2.9. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is in the class $\mathcal{B}(\beta)$, then

$$
\left|a_{2}\right| \leq\left\{\begin{array}{ll}
\sqrt{\frac{2(1-\beta)}{3}}, & \text { if } \quad 0 \leq \beta \leq \frac{1}{3}, \\
1-\beta, & \text { if } \quad \frac{1}{3}<\beta<1,
\end{array} \quad\left|a_{3}\right| \leq \frac{2(1-\beta)}{3}, \quad \text { and } \quad\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{2(1-\beta)}{3}\right.
$$

Remark 2.10. For the special case $\frac{1}{3}<\beta<1$, the above first inequality, and the second one for all $0 \leq \beta<1$, improve the estimates given by Srivastava et al. in [28, Theorem 2].

Theorem 2.11. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{R}_{\Sigma}(\gamma, \lambda, m ; \beta)$. Then

$$
\begin{align*}
\left|a_{2}\right| & \leq \min \left\{\sqrt{\frac{|\gamma| m(1-\beta)}{2+\lambda}} ; \frac{|\gamma| m(1-\beta)}{1+\lambda}\right\} \tag{2.15}\\
\left|a_{3}\right| & \leq \frac{|\gamma| m(1-\beta)}{2+\lambda} \tag{2.16}\\
\left|2 a_{2}^{2}-a_{3}\right| & \leq \frac{|\gamma| m(1-\beta)}{2+\lambda} \tag{2.17}
\end{align*}
$$

Proof. Since $f \in \mathcal{R}_{\Sigma}(\gamma, \lambda, m ; \beta)$, from the Definition 1.5 we have

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z^{1-\lambda} f^{\prime}(z)}{(f(z))^{1-\lambda}}-1\right)=p(z) \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{w^{1-\lambda} g^{\prime}(w)}{(g(w))^{1-\lambda}}-1\right)=q(w) \tag{2.19}
\end{equation*}
$$

where $p, q \in \mathcal{P}_{m}(\beta)$ and $g=f^{-1}$. Using the fact that the functions p and q have the following Taylor expansions

$$
\begin{align*}
& p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots, z \in \mathbb{D} \tag{2.20}\\
& q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots, w \in \mathbb{D} \tag{2.21}
\end{align*}
$$

and equating the coefficients in (2.18) and (2.19), from (1.2) we get

$$
\begin{gather*}
\frac{1}{\gamma}(1+\lambda) a_{2}=p_{1} \tag{2.22}\\
\frac{a_{3}}{\gamma}(2+\lambda)=p_{2} \tag{2.23}\\
-\frac{1}{\gamma}(1+\lambda) a_{2}=q_{1} \tag{2.24}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{(2+\lambda)}{\gamma}\left(2 a_{2}^{2}-a_{3}\right)=q_{2} . \tag{2.25}
\end{equation*}
$$

Since $p, q \in \mathcal{P}_{m}(\beta)$, according to Lemma 1.7, the next inequalities hold:

$$
\begin{align*}
& \left|p_{k}\right| \leq m(1-\beta), k \geq 1, \tag{2.26}\\
& \left|q_{k}\right| \leq m(1-\beta), k \geq 1, \tag{2.27}
\end{align*}
$$

and thus, from (2.23) and (2.25), by using the inequalities (2.26) and (2.27), we obtain

$$
\left|a_{2}\right|^{2} \leq|\gamma| \frac{\left|q_{2}\right|+\left|p_{2}\right|}{2(2+\lambda)} \leq \frac{|\gamma| m(1-\beta)}{2+\lambda}
$$

which gives

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{|\gamma| m(1-\beta)}{2+\lambda}} \tag{2.28}
\end{equation*}
$$

From (2.22), by using (2.26) we obtain immediately that

$$
\left|a_{2}\right|=\left|\frac{\gamma p_{1}}{1+\lambda}\right| \leq \frac{|\gamma| m(1-\beta)}{1+\lambda}
$$

and combining this with the inequality (2.28), the first inequality of the conclusion is proved.
According to (2.23), from (2.26) we easily obtain

$$
\left|a_{3}\right|=\left|\frac{\gamma p_{2}}{2+\lambda}\right| \leq \frac{|\gamma| m(1-\beta)}{2+\lambda}
$$

and from (2.25), by using (2.27) we finally deduce

$$
\left|2 a_{2}^{2}-a_{3}\right|=\left|\frac{\gamma q_{2}}{2+\lambda}\right| \leq \frac{|\gamma| m(1-\beta)}{2+\lambda}
$$

which completes our proof.
Corollary 2.12. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{S}_{\Sigma}(\gamma, \lambda, m ; \beta)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \min \left\{\sqrt{\frac{|\gamma| m(1-\beta)}{2}} ;|\gamma| m(1-\beta)\right\} \\
& \left|a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{2} \quad \text { and } \quad\left|2 a_{2}^{2}-a_{3}\right| \leq \frac{|\gamma| m(1-\beta)}{2}
\end{aligned}
$$

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351.
[2] S. Altınkaya and S. Yalçin, Second Hankel determinant for bi-starlike functions of order β, Matematiche (Catania) 71 (2016), no. 1, 115-125.
[3] Ş. Altınkaya and S. Yalçin, Coefficient problem for certain subclasses of bi-univalent functions defined by convolution, Math. Morav. 20 (2016), no. 2, 15-21.
[4] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2013), no. 2, 59-65.
[5] S. Bulut, N. Magesh and V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 2, 113-116.
[6] M. Çağlar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41 (2017), 694-706
[7] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), no. 7, 1165-1171.
[8] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal. 2 (2013), no. 1, 49-60.
[9] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften Series, 259, Springer Verlag, New York, 1983.
[10] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569-1573.
[11] P. Goswami, B. S. Alkahtani and T. Bulboacă, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions, arXiv:1503.04644v1 [math.CV] March (2015).
[12] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (2012), no. 4, 15-26.
[13] J. M. Jahangiri, S. G. Hamidi and S. Abd. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), no. 3, 633-640.
[14] J. M. Jahangiri, N. Magesh and J. Yamini, Fekete-Szegö inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl., 3 (2015), no. 1, 133-140.
[15] N. Magesh, T. Rosy and S. Varma, Coefficient estimate problem for a new subclass of biunivalent functions, J. Complex Anal. 2013, Art. ID 474231, 3 pp.
[16] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for a general class of biunivalent functions, Filomat, 29 (2015), no. 6, 1259-1267.
[17] H. Orhan, N. Magesh and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. 40 (2016), no. 3, 679-687.
[18] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311-323.
[19] S. Prema, B. S. Keerthi, Coefficient bounds for certain subclasses of analytic functions, Journal of Mathematical Analysis, 4 (2013), no. 1, 22-27.
[20] C. Ramachandran, R. Ambrose Prabhu and N. Magesh, Initial coefficient estimates for certain subclasses of bi-univalent functions of Ma-Minda type, Applied Mathematical Sciences, 9 (2015), no. 47, $2299-2308$.
[21] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), no. 2, 242-246.
[22] H. M. Srivastava, S. Bulut, M. Çağlar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), no. 5, 831-842.
[23] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), no. 8, 1839-1845.
[24] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of M-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 41 (2015), 153164.
[25] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (2016), no. 3, 863-871.
[26] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5 (2016), Special Issue: 1, 250-258.
[27] H. M. Srivastava, N. Magesh and J. Yamini, Initial coefficient estimates for bi- λ - convex and bi- μ - starlike functions connected with arithmetic and geometric means, Electronic J. Math. Anal. Appl. 2 (2014), no. 2, 152 - 162.
[28] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192.
[29] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of biunivalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2013), no. $2,67-73$.
[30] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7 (2014), no. 2, 1-10.
[31] H. Tang, G-T Deng and S-H Li, Coefficient estimates for new subclasses of Ma-Minda biunivalent functions, J. Inequal. Appl. 317 (2013), 1-10.
[32] H. Tang, H. M. Srivastava, S.Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10 (2016), no. 4, 1063-1092.
[33] A. E. Tudor, Bi-univalent functions connected with arithmetic and geometric means, J. Global Res. Math. Archives, 1 (2013), no. 3, 78-83.
[34] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994.
[35] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461-11465.

